64
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Mouse Monocytes (RAW CELLS) and the Handling of Cysteine and Homocysteine S-Conjugates of Inorganic Mercury and Methylmercury

, &
Pages 799-809 | Received 04 May 2006, Accepted 08 Jul 2006, Published online: 17 Apr 2007
 

Abstract

Although there is evidence indicating that mononuclear phagocytes can take up mercury by some forms of endocytosis, very little is known about the potential for the uptake of mercuric species by carrier-mediated processes. Thus, we hypothesized that monocytes also possess mechanisms allowing these cells to take up inorganic mercury (Hg2+) and/or methylmercury (CH3Hg+) as cysteine (Cys) and/or homocysteine (Hcy) S-conjugates by certain membrane transport proteins. The specific thiol S-conjugates were chosen for study because our laboratory and those of some other investigators have demonstrated that these species of mercury are indeed transportable substrates for several membrane transport proteins in certain types of epithelial cells. We chose to use RAW 264.7 cells for our experiments. These cells represent an adherent line of mouse monocytes. Kinetic analyses for the uptake of Cys-Hg-Cys, CH3Hg-Cys, Hcy-Hg-Hcy, and CH3Hg-Hcy revealed that uptake occurred by a saturable, concentration-dependent mechanism, displaying Michaelis–Menten properties. Interestingly, in the cells exposed to the Cys or Hcy S-conjugate of Hg2+, significantly more Hg2+ was taken up in the presence of 140 mM sodium chloride (NaCl) than in the presence of 140 mM N-methyl-d-glucamine (NMDG), indicating that Na-dependent processes play more of a role in the uptake of these species of Hg2+ than sodium-independent ones. With respect to the uptake of CH3Hg+, rates of uptake of the Cys and Hcy S-conjugates of CH3Hg+ were similar under both Na-dependent and Na-independent conditions, although the levels of uptake of these mercuric species far exceeded the levels of uptake of the corresponding S-conjugate of Hg2+. Uptake of Hg2+ and CH3Hg+, as the Cys or Hcy S-conjugates, was also time-dependent. We also showed that when the temperature in the bathing medium was reduced to 4°C, uptake of the Cys S-conjugates Hg2+ or CH3Hg+ was for the most part reduced to negligible levels in the RAW cells; indicating that the preponderance of uptake at 37°C was not due primarily to simple diffusion and/or non-specific binding. Overall, the present findings strongly suggest that the uptake of the Cys and Hcy S-conjugates of Hg2+ and/or CH3Hg+ occurs in monocytes by one or more mechanisms involving carrier proteins.

This project was supported, in part, by grants ES05157, ES05980, and ES11288 from the National Institute of Environmental Health Science and by grant MOP-49441 funded by the Canadian Institutes of Health Research. The authors thank Dr. Delon Barfuss, at Georgia State University, for his assistance in supplying radioactive mercury for the experiments described in this article. The authors also thank Dr. Christy C. Bridges for reading the article and providing editorial suggestions.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.