73
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Gene-Expression Profiling of Human Mononuclear Cells from Welders Using cDNA MicroarrayFootnote

, , , , , & show all
Pages 1264-1277 | Published online: 24 Jul 2007
 

Abstract

A toxicogenomic chip developed to detect welding-related diseases was tested and validated for field trials. To verify the suitability of the microarray, white blood cells (WBC) or whole blood was purified and characterized from 20 subjects in the control group (average work experience of 7 yr) and 20 welders in the welding-fume exposed group (welders with an average work experience of 23 yr). Two hundred and fifty-three rat genes homologous to human genes were obtained and spotted on the chip slide. Meanwhile, a human cDNA chip spotted with 8600 human genes was also used to detect any increased or decreased levels of gene expression among the welders. After comparing the levels of gene expression between the control and welder groups using the toxicogenomic chips, 103 genes were identified as likely to be specifically changed by welding-fume exposure. Eighteen of the 253 rat genes were specifically changed in the welders, while 103 genes from the human cDNA chip were specifically changed. The genes specifically expressed by the welders were associated with inflammatory responses, toxic chemical metabolism, stress proteins, transcription factors, and signal transduction. In contrast, there was no significant change in the genes related to short-term welding-fume exposure, such as tumor necrosis factor (TNF)-alpha and interleukin. In conclusion, if further validation studies are conducted, the present toxicogenomic gene chips could be used for the effective monitoring of welding-fume-exposure-related diseases among welders.

Notes

∗This study was supported by a 2004 research grant from the Occupational Safety & Health Research Institute, KOSHA (Korea Occupational Safety & Health Agency).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.