387
Views
58
CrossRef citations to date
0
Altmetric
Original Articles

Concentration of Oxygenated Polycyclic Aromatic Hydrocarbons and Oxygen Free Radical Formation from Urban Particulate Matter

, , , , , & show all
Pages 1866-1869 | Published online: 11 Oct 2007
 

Abstract

PM2.5 filter samples were collected in summer 2005 at an urban background site in Augsburg, Germany. They were analyzed for polycyclic aromatic hydrocarbons (PAH) and their oxygenated derivatives (O-PAH) using gas chromatography/mass spectrometry. Oxygen free radical formation (reactive oxygen substances, ROS) was measured by electron spin resonance (ESR) spectroscopy after addition of spin trapping agent directly on the same filters. The concentrations of ambient, high-boiling PAH and O-PAH were highly correlated to ROS formation, even better than to particulate mass or number concentration. Correlations were most pronounced for some polycyclic aromatic monoketones (e.g., benz[de]anthracene-7-one), which are not yet reported in literature to be redox cycling active. The association found between ESR measurements and the presence of specific semivolatile organic compounds suggests an important influence of wood burning in PM2.5-associated ROS formation. These results indicate that further research on the relationship between radical formation and presence of specific O-PAH and semivolatile organic compounds (SVOC) are likely to provide a better understanding of the relationship between the source-dependent chemical composition of PM and the toxicological risks associated with PM exposure.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.