1,002
Views
123
CrossRef citations to date
0
Altmetric
Original Articles

Imidacloprid Induces Neurobehavioral Deficits and Increases Expression of Glial Fibrillary Acidic Protein in the Motor Cortex and Hippocampus in Offspring Rats Following in Utero Exposure

, , , , , & show all
Pages 119-130 | Received 30 Apr 2007, Accepted 17 Jul 2007, Published online: 01 Mar 2011
 

Abstract

Imidacloprid, a neonicotinoid, is one of the fastest growing insecticides in use worldwide because of its selectivity for insects. The potential for neurotoxicity following in utero exposure to imidacloprid is not known. Timed pregnant Sprague-Dawley rats (300–350 g) on d 9 of gestation were treated with a single intraperitoneal injection (ip) of imidacloprid (337 mg/kg, 0.75 × LD50, in corn oil). Control rats were treated with corn oil. On postnatal day (PND) 30, all male and female offspring were evaluated for (a) acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activity, (b) ligand binding for nicotinic acetylcholine receptors (nAChR) and muscarinic acetylcholine receptors (m2 mAChR), (c) sensorimotor performance (inclined plane, beam-walking, and forepaw grip), and (d) pathological alterations in the brain (using cresyl violet and glial fibrillary acidic protein [GFAP] immunostaining). The offspring of treated mothers exhibited significant sensorimotor impairments at PND 30 during behavioral assessments. These changes were associated with increased AChE activity in the midbrain, cortex and brainstem (125–145% increase) and in plasma (125% increase). Ligand binding densities for [3H]cytosine for α4β2 type nAchR did not show any significant change, whereas [3H]AFDX 384, a ligand for m2mAChR, was significantly increased in the cortex of offspring (120–155% increase) of imidacloprid-treated mothers. Histopathological evaluation using cresyl violet staining did not show any alteration in surviving neurons in various brain regions. On the other hand, there was a rise in GFAP immunostaining in motor cortex layer III, CA1, CA3, and the dentate gyrus subfield of the hippocampus of offspring of imidacloprid-treated mothers. The results indicate that gestational exposure to a single large, nonlethal, dose of imidacloprid produces significant neurobehavioral deficits and an increased expression of GFAP in several brain regions of the offspring on PND 30, corresponding to a human early adolescent age. These changes may have long-term adverse health effects in the offspring.

Acknowledgements

This study was supported by funds available from the Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.