274
Views
31
CrossRef citations to date
0
Altmetric
Original Articles

Integrated Disinfection By-Products Research: Salmonella Mutagenicity of Water Concentrates Disinfected by Chlorination and Ozonation/Postchlorination

, , , &
Pages 1187-1194 | Published online: 17 Jul 2008
 

Abstract

Although chemical disinfection of drinking water is a highly protective public health practice, the disinfection process is known to produce toxic contaminants. Epidemiological studies associate chlorinated drinking water with quantitatively increased risks of rectal, kidney, and bladder cancer. One study found a significant exposure-response association between water mutagenicity and relative risk for bladder and kidney cancer. A number of studies found that several types of disinfection processes increase the level of mutagens detected by the Salmonella assay. As part of a comprehensive study to examine chlorinated and ozonated/postchlorinated drinking water for toxicological contaminants, the Salmonella mutagenicity assay was used to screen both volatile and nonvolatile organic components. The assay also compared the use of reverse osmosis and XAD resin procedures for concentrating the nonvolatile components. Companion papers provide the results from other toxicological assays and chemical analysis of the drinking water samples. The volatile components of the ozonated/postchlorinated and chlorinated water samples and a trihalomethane mixture were mutagenic to a Salmonella tester strain transfected with a rat theta-class glutathione S-transferase and predominantly nonmutagenic in the control strain. In this study, the nonvolatile XAD concentrate of the untreated water possessed a low level of mutagenic activity. However, compared to the levels of mutagenicity in the finished water XAD concentrates, the contribution from the settled source water was minimal. The mutagenicity seen in the reverse osmosis concentrates was < 50% of that seen in the XAD concentrates. Overall, mutagenic responses were similar to those observed in other North American studies and provide evidence that the pilot plant produced disinfection by-products similar to that seen in other studies.

The authors thank Peggy Matthews for her help and skillful technical assistance. Thanks also go to Paul White and John Meier for helpful comments on this article. This article does not necessarily reflect the views of the U.S. EPA, and no official endorsement should be inferred. The information in this document has been funded by the U.S. Environmental Protection Agency. It has been subjected to review by the National Health and Environmental Effects Research Laboratory (U.S. EPA) and approved for publication. Approval does not signify that the contents reflect the views of the agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.