195
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Effects of Tributyltin (TBT) on In Vitro Hormonal and Biotransformation Responses in Atlantic Salmon (Salmo salar)

&
Pages 209-218 | Published online: 30 Jan 2009
 

Abstract

The mechanisms by which the biocide tributyltin (TBT) and its metabolites affect the hormonal and xenobiotic biotransformation pathways in aquatic species are not well understood. In this study hepatocytes isolated from salmon were used to evaluate the mechanistical effects of TBT on fish hormonal and xenobiotic biotransformation pathways. Cells were exposed to 0.01, 0.1, 1, or 5 μM TBT and samples were collected at 0, 12, 24, or 48 h following exposure. Gene expression patterns were evaluated using quantitative polymerase chain reaction (PCR), and cytochrome P-450 (CYP)-mediated enzyme activities were evaluated by ethoxyresorufin, benzyloxyresorufin, and pentoxyresorufin O-deethylase (EROD, BROD, and PROD, respectively) activity assays. Generally, exposure of hepatocytes to 1 μM (at 48 h) and 5 μM TBT (at 12, 24, and 48 h) consistently produced reductions in all mRNA species investigated. TBT produced significant decreases of vitellogen (Vtg) expression at 48 h and modified the expression patterns of estrogen receptors (ERα and ERβ) and androgen receptor-β (ARβ) that were dependent on time and TBT concentration. In the xenobiotic biotransformation pathway, TBT produced differential expression patterns that were dependent on exposure time and concentration for all salmonid AhR2 isoforms (AhR2α, AhR2β, AhR2δ, and AhR2γ). For CYP1A1, CYP3A, AhRR, and Arnt mRNA, TBT produced exposure- and time-specific modulations. Catalytic CYP activities showed that BROD activity increased in an apparent concentration-specific manner in cells exposed to TBT for 12 h. Interestingly, EROD activity showed a TBT concentration-dependent increase at 24 h and PROD at 12 and 48 h of exposure. In general our data show that TBT differentially modulated hormonal and biotransformation responses in the salmon in vitro system. The apparent and consistent decrease of the studied responses with time in 1 and 5 μM exposed hepatocytes suggest a possible transcription inhibitory effect of TBT.

The study was supported by a grant from the Norwegian research council (NFR). We are grateful to Siv-Hege Vang for valuable help during preparation of primary hepatocyte cultures.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.