106
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Oxidative Stress Due to (R)-Styrene Oxide Exposure and The Role of Antioxidants in Non-Swiss Albino (NSA) Mice

, , &
Pages 642-650 | Received 31 Oct 2008, Accepted 15 Jan 2009, Published online: 20 Apr 2009
 

Abstract

Styrene produces lung and liver damage that may be related to oxidative stress. The purpose of this study was to investigate the toxicity of (R)-styrene oxide (R-SO), the more active enantiomeric metabolite of styrene, and the protective properties of the antioxidants glutathione (GSH), N-acetylcysteine (NAC), and 4-methoxy-L-tyrosinyl-γ-L-glutamyl-L-cysteinyl-glycine (UPF1) against R-SO-induced toxicity in non-Swiss Albino (NSA) mice. UPF1 is a synthetic GSH analog that was shown to have 60 times the ability to scavenge reactive oxygen species (ROS) in comparison to GSH. R-SO toxicity to the lung was measured by elevations in the activity of lactate dehydrogenase (LDH), protein concentration, and number of cells in bronchoalveolar lavage fluid (BALF). Toxicity to the liver was measured by increases in serum sorbitol dehydrogenase (SDH) activity. Antioxidants were not able to decrease the adverse effects of R-SO on lung. However, NAC (200 mg/kg) ip and GSH (600 mg/kg), administered orally prior to R-SO (300 mg/kg) ip, showed significant protection against liver toxicity as measured by SDH activity. Unexpectedly, a synthetic GSH analog, UPF1 (0.8 mg/kg), administered intravenously (iv) prior to R-SO, produced a synergistic effect with regard to liver and lung toxicity. Treatment with UPF1 (0.8 mg/kg) iv every other day for 1 wk for preconditioning prior to R-SO ip did not result in any protection against liver and lung toxicity, but rather enhanced the toxicity when administered prior R-SO. The results of the present study demonstrated protection against R-SO toxicity in liver but not lung by the administration of the antioxidants NAC and GSH.

Acknowledgements

Procedures and protocols were approved by the Purdue University Animal Care and Use Committee. The work was supported in part by a grant from the Styrene Information and Research Center to GPC and by the European Union through the European Regional development Fund and by Estonian Science Foundation grant number 6503 and by targeted financing from Ministry of Education and Science of Estonia (SF0180105s08) for U. Soomets.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.