232
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Repeated Measures of Validated and Novel Biomarkers of Exposure to Polycyclic Aromatic Hydrocarbons in Individuals Living Near an Aluminum Plant in Quebec, Canada

, , , , , & show all
Pages 1534-1549 | Received 02 Mar 2009, Accepted 29 May 2009, Published online: 02 Nov 2009
 

Abstract

A longitudinal biomonitoring study was conducted to assess exposure to polycyclic aromatic hydrocarbons (PAH) in non-occupationally exposed nonsmoking adults living in the vicinity of an aluminum plant. Metabolites of several PAH (pyrene, naphthalene, chrysene, fluoranthene, benz[a]anthracene) were measured in the urine of the participants, including 1-hydroxypyrene (1-OHP) as a validated biomarker and pyrene diones as novel biomarkers. In total, 73 individuals living about 1 km away from the plant (taken as the exposed group) were compared repeatedly with 71 individuals living at least 11 km from the smelter (used as the control group). Complete first morning voids were collected twice, at a 2-wk interval, in the fall of 2005 and twice weekly for 2 consecutive weeks in the spring of 2006. Urinary biomarker concentrations were then measured by an ultra-performance liquid chromatography (UPLC) method with time-of-flight mass spectrometry detection (MS-TOF) (UPLC-MS-TOF). For most sampling days, individuals living near the plant showed significantly higher excretion values of both 1-OHP and pyrene diones (mean ratio up to 2- and 2.4-fold, respectively) than individuals living further from the plant. In the group living near the plant, geometric mean concentrations of 1-OHP varied from 0.047 to 0.058 μmol/mol creatinine, depending on the sampling day, as compared to 0.025 to 0.04 μmol/mol creatinine in the reference group. Corresponding mean values for pyrene diones were 0.017–0.056 μmol/mol creatinine and 0.014–0.039 μmol/mol creatinine, respectively. Urinary 1- and 2-naphthols were also measured as a reference and showed no significant differences between the two groups for most sampling days; metabolite concentrations of the other monitored PAH (chrysene, fluoranthene, benz[a]anthracene) were mostly below the analytical limit of detection of 0.005 to 0.01 μg/L, depending on the metabolite, with a detection rate varying from 0 to at most 21%. Individuals living near the aluminum plant thus appeared to be repeatedly exposed to higher pyrene levels than the control group, on the basis of both 1-OHP and pyrene dione excretions. However, 1-OHP concentrations observed in this first group were similar to those of other reference populations of nonsmokers studied in the past. Uptake of the other PAH associated with plant emissions was too small to significantly increase the excretion of their metabolites.

Acknowledgements

This study was funded by the North Shore Health and Social Services Agency, Quebec, Canada, and by ALCOA. The authors are very grateful to Dr. Raynald Cloutier for the coordonnation of the field work and to all the participants and field personnel. The authors also address a special thanks to Dr. Mark Cullen and Jean-Pierre Barry for very helpful discussions with the study design.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.