204
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Cytoprotective Effects of Triphlorethol-A Against Formaldehyde-Induced Oxidative Damage and Apoptosis: Role of Mitochondria-Mediated Caspase-Dependent Pathway

, , , , , , , , & show all
Pages 1477-1489 | Published online: 13 Oct 2010
 

Abstract

The toxicity of formaldehyde (HCHO) has been attributed to its ability to form adducts with DNA and proteins. Triphlorethol-A, derived from Ecklonia cava, was reported to exert a cytoprotective effect against oxidative stress damage via an antioxidant mechanism. The aim of this study was to examine the mechanisms underlying the triphlorethol-A ability to protect Chinese hamster lung fibroblast (V79-4) cells against HCHO-induced damage. Triphlorethol-A significantly decreased the HCHO-induced intracellular reactive oxygen species (ROS) production. Triphlorethol-A prevented increased cell damage induced by HCHO via inhibition of mitochondria-mediated caspase-dependent apoptosis pathway. Triphlorethol-A diminished HCHO-induced mitochondrial dysfunction, including loss of mitochondrial membrane action potential (Δψ) and adenosine triphosphate (ATP) depletion. Furthermore, the anti-apoptotic effect of triphlorethol-A was exerted through inhibition of c-Jun NH2-terminal kinase (JNK), which was enhanced by HCHO. Our data indicate that triphlorethol-A exerts a cytoprotective effect in V79-4 cells against HCHO-induced oxidative stress by inhibiting the mitochondria-mediated caspase-dependent apoptotic pathway.

This work was supported by the Ministry of Education, Science and Technology of Korea (2009–0084685).

Notes

The first two authors contributed equally to this study.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.