578
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Triphlorethol-A Improves the Non-Homologous End Joining and Base-Excision Repair Capacity Impaired by Formaldehyde

, , , , , & show all
Pages 811-821 | Received 27 Oct 2010, Accepted 27 Dec 2010, Published online: 02 May 2011
 

Abstract

Formaldehyde (HCHO) generates reactive oxygen species (ROS) that induce DNA base modifications and DNA strand breaks and contributes to mutagenesis and other pathological processes. DNA non-homologous end-joining (NHEJ), a major mechanism for repairing DNA double-stranded breaks (DSB) in mammalian cells, involves the formation of a Ku protein heterodimer and recruitment of a DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to the site of DNA damage. HCHO treatment induced DSB and decreased the protein expressions of Ku 70 and phosphorylated DNA-PKcs. Triphlorethol-A reduced DNA strand breaks and restored the expression of NHEJ-related proteins. In response to oxidative DNA base damage, 8-oxoguanine DNA glycosylase 1 (OGG1) plays a vital role in repair of 8-hydroxy-2′-deoxyguanosine (8-OhdG) via the base-excision repair (BER) process. In this study, HCHO significantly increased 8-OhdG levels, whereas triphlorethol-A lowered 8-OhdG levels. Suppression of 8-OhdG formation by triphlorethol-A was related to enhanced OGG1 protein expression. Triphlorethol-A also enhanced the expression of phosphorylated Akt (the active form of Akt), a regulator of OGG1, which was found to be decreased by HCHO treatment. The phosphoinositol 3-kinase (PI3K)-specific inhibitor LY294002 abolished the cytoprotective effects induced by triphlorethol-A, suggesting that OGG1 restoration by triphlorethol-A is involved in the PI3K/Akt pathway. These results suggest that triphlorethol-A may protect cells against HCHO-induced DNA damage via enhancement of NHEJ and BER capacity.

Acknowledgments

This work was supported by the Ministry of Education, Science and Technology of Korea (2010-0027722).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.