209
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Impact of Repeated Nicotine and Alcohol Coexposure on in Vitro and in Vivo Chlorpyrifos Dosimetry and Cholinesterase Inhibition

, , , , &
Pages 1334-1350 | Received 29 Oct 2010, Accepted 06 Jan 2011, Published online: 07 Sep 2011
 

Abstract

Chlorpyrifos (CPF) is an organophosphorus insecticide, and neurotoxicity results from inhibition of acetylcholinesterase (AChE) by its metabolite, chlorpyrifos-oxon. Routine consumption of alcohol and tobacco modifies metabolic and physiological processes impacting the metabolism and pharmacokinetics of other xenobiotics, including pesticides. This study evaluated the influence of repeated ethanol and nicotine coexposure on in vivo CPF dosimetry and cholinesterase (ChE) response (ChE- includes AChE and/or butyrylcholinesterase (BuChE)). Hepatic microsomes were prepared from groups of naive, ethanol-only (1 g/kg/d, 7 d, po), and ethanol + nicotine (1 mg/kg/d 7 d, sc)-treated rats, and the in vitro metabolism of CPF was evaluated. For in vivo studies, rats were treated with saline or ethanol (1 g/kg/d, po) + nicotine (1 mg/kg/d, sc) in addition to CPF (1 or 5 mg/kg/d, po) for 7 d. The major CPF metabolite, 3,5,6-trichloro-2-pyridinol (TCPy), in blood and urine and the plasma ChE and brain acetylcholinesterase (AChE) activities were measured in rats. There were differences in pharmacokinetics, with higher TCPy peak concentrations and increased blood TCPy AUC in ethanol + nicotine groups compared to CPF only (approximately 1.8- and 3.8-fold at 1 and 5 mg CPF doses, respectively). Brain AChE activities after ethanol + nicotine treatments showed significantly less inhibition following repeated 5 mg CPF/kg dosing compared to CPF only (96 ± 13 and 66 ± 7% of naive at 4 h post last CPF dosing, respectively). Although brain AChE activity was minimal inhibited for the 1-mg CPF/kg/d groups, the ethanol + nicotine pretreatment resulted in a similar trend (i.e., slightly less inhibition). No marked differences were observed in plasma ChE activities due to the alcohol + nicotine treatments. In vitro, CPF metabolism was not markedly affected by repeated ethanol or both ethanol + nicotine exposures. Compared with a previous study of nicotine and CPF exposure, there were no apparent additional exacerbating effects due to ethanol coexposure.

Acknowledgments

Although Drs. Timchalk and Poet have received funding from the Dow Chemical Company, the manufacturer of chlorpyrifos, to conduct research, the Dow Chemical Company did not have any involvement in the study design, analysis, and interpretation of data, in the writing of the report, or in the decision to submit this paper for publication. We gratefully acknowledge Dr. J. Campbell for valuable discussions. Although the research described in this article has been funded by the Centers for Disease Control and Prevention (CDC)/National Institute for Occupational Safety and Health (NIOSH) [CDC/NIOSH grant (R01-OH003629) to Dr. Timchalk], it has not been subject to any CDC/NIOSH review and therefore does not necessarily reflect the official views of the agencies; its contents are solely the responsibility of the authors and no public endorsement should be inferred.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.