365
Views
67
CrossRef citations to date
0
Altmetric
Original Articles

Assessment of Immunotoxicity Parameters in Individuals Occupationally Exposed to Lead

, , , , , , , , & show all
Pages 807-818 | Published online: 12 Jul 2012
 

Abstract

Although adverse health effects produced by lead (Pb) have long been recognized, studies regarding the immunotoxic effects of occupational exposure report conflicting results. In a previous study, alterations in some immunological parameters were noted in 70 Pb-exposed workers. In view of these results, it was of interest to extend this study comprising a larger population and increasing the number of immunological endpoints assessed. Accordingly, in this study the immunotoxic effects of occupational exposure to Pb were assessed by analyzing (1) percentages of lymphocyte subsets (CD3+, CD4+, CD8+, CD19+, and CD56+/16+); (2) concentration of plasma cytokines, namely, interleukin (IL) 2, IL4, IL6, IL10, tumor necrosis factor (TNF) α, and interferon (IFN) γ; and (3) plasma concentrations of neopterin, tryptophan (Trp), and kynurenine (Kyn). In addition, the possible influence of genetic polymorphisms in the vitamin D receptor (VDR) and δ-aminolevulinic acid dehydratase (ALAD) genes on immunotoxicity parameters was studied. Exposed workers showed significant decreases in %CD3+, %CD4+/%CD8+ ratio, IL4, TNFα, IFNγ, and Kyn to Trp ratio (Kyn/Trp), and significant increases in %CD8+, IL10, and Trp levels. All these parameters, except Trp, were significantly correlated with exposure biomarkers. No significant influence of genetic polymorphisms was observed. Significant correlation between Kyn/Trp and neopterin concentrations suggests an involvement of indoleamine 2,3-dioxygenase in the Trp metabolic alterations, which may contribute to some of the immune alterations observed. Results obtained suggest that occupational exposure to PB may influence the immune system by impairing several mechanisms, which might ultimately produce deregulation of the immune response and diminish immunosurveillance in exposed individuals.

Acknowledgments

This work was partly supported by the Spanish Ministry of Science and Innovation (PSI2010-15115), Portuguese Fundação para a Ciência e a Tecnologia (PDCT/SAU-OBS/59821/2004), and European Commission (ERA NET–New INDIGO Program, NanoLINEN project, PIM2010ENI-00632).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.