235
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Polybrominated Diphenyl Ether (PBDE)-Induced Suppression of Phosphoenolpyruvate Carboxykinase (PEPCK) Decreases Hepatic Glyceroneogenesis and Disrupts Hepatic Lipid Homeostasis

, , &
Pages 1437-1449 | Received 11 Aug 2015, Accepted 18 Sep 2015, Published online: 21 Dec 2015
 

Abstract

Polybrominated diphenyl ethers (PBDE) are a class of flame-retardant chemicals that leach into the environment and enter the human body. PBDE have been shown to suppress activity of phosphoenolpyruvate carboxykinase (PEPCK), a key enzyme in fatty acid esterification via hepatic glyceroneogenesis. The objective of this investigation was to assess hepatic glyceroneogenesis and lipid metabolism in PBDE-treated rats. Male, weanling Wistar rats were gavaged daily for 28 d with 14 mg/kg body weight of either DE-71, a commercial PBDE mixture (treated), or corn oil (control). After a 48-h fast, rats were euthanized, blood was obtained, and livers were excised. Suppression of hepatic PEPCK activity by 40% was noted. Serum ketone bodies were elevated by 27% in treated rats compared to controls, while hepatic glyceroneogenesis as measured by 14C-pyruvate incorporation into triglycerides was 41% lower in explants from treated rats compared to controls. Liver lipid content was 29% lower in treated animals compared to controls. Taken together, these findings suggest that DE-71-induced inhibition of hepatic PEPCK activity alters lipid metabolism by redirecting fatty acids away from esterification and storage toward ketone synthesis.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the contributions of Dr. Heather Stapleton for liver PBDE analyses and undergraduate researchers Michael MacArthur and Alexandra Soucy for their laboratory assistance. Partial funding was provided by the New Hampshire Agricultural Experiment Station. This is Scientific Contribution Number 2621. This work was supported by the USDA National Institute of Food and Agriculture Hatch Project 0223362.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.