240
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Involvement of hypoxia-inducible factor-1 α (HIF-1α) in inhibition of benzene on mouse hematopoietic system

, , &
 

ABSTRACT

Benzene is an occupational and environmental pollutant that damages the hematopoietic system through oxidant mechanisms. The aims of this study were to assess the role of oxidation in benzene-mediated damage by determination of the levels of reactive oxygen species (ROS) and to evaluate the role of hypoxia-inducible factor-1α (HIF-1α) in this process. C57BL/6 mice were exposed to benzene at varying concentrations of 60, 150, or 300 mg/kg/d for 15 d. Mice in the benzene groups displayed weight loss, and hematologic consequences including decreased red and white blood cell counts, reduced platelet count, diminished hemoglobin content, and lower number of hematopoietic stem cells in bone marrow (BM). There was an elevated proportional neutrophil count and decrease in relative thymus weight. In BM there was a significant increase in ROS levels at 150 mg/kg benzene. However, as a result of diminished cellular viability, ROS levels were not markedly different between the 300-mg/kg benzene dose and the control, as the number of hematopoietic stem cells was reduced. HIF-1α expression and protein levels were decreased in BM cells at all doses of benzene. In conclusion, data indicated that HIF-1α may be involved in benzene-induced inhibition of mouse hematopoiesis and that oxidative stress may play a role in the observed toxicity.

Funding

This work was supported by the National Natural Science Foundation of China (grants 81573189, 81373034).

Additional information

Funding

This work was supported by the National Natural Science Foundation of China (grants 81573189, 81373034).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.