95
Views
0
CrossRef citations to date
0
Altmetric
Articles

Role of NF-κB activation in mouse bone marrow stromal cells exposed to 900 MHz radiofrequency fields (RF)

, , , &
 

ABSTRACT

Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a primary transcription factor which plays a key role in several cellular processes including proliferation and survival. It is well-known that exposure to non-ionizing radiofrequency fields (RF), which are ubiquitous, interact with cellular components. The aim of the study was thus to examine whether exposure of mouse bone marrow stromal cells (BMSC) to RF also resulted in cellular interactions. BMSC were exposed to 900 MHz RF at 120 μW/cm2 power intensity for 4 hr/day for 5 consecutive days. The relative protein expression levels of NF-κB in the cytoplasm and nucleus of RF-exposed cells were compared to non-RF-exposed controls. At 30 min post-RF exposure a significant decrease in protein expression of NF-κB in the cytoplasm was accompanied by a concomitant increase in nuclear NF-κB protein expression levels. Similar responses were noted in the cytoplasm and nuclear NF-κB levels at 2 hr with a return to control concentrations in primary transcription factor at 24 hr post-RF treatment. Daily incubation of BAY 11–7082 an inhibitor of NF-κB for 90 min for 5 days followed by RF each day prevented the fall in cytoplasmic NF-κB and rise in nuclear primary transcription factor at 30 min and 2 hr. There were no marked alterations at 24 hr. Data showed that the effects of RF treatment on BMSC involved transient activation of NF-κB which may be attributed to RF-mediated cellular perturbation as evidenced by consequences of BAY 11–7082 inhibition.

Additional information

Funding

This investigation was supported by funding from the National Natural Science Foundation of China (grant# 81373025).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.