340
Views
17
CrossRef citations to date
0
Altmetric
Articles

Assessment of the effects of repeated doses of potassium iodide intake during pregnancy on male and female rat offspring using metabolomics and lipidomics

ORCID Icon, , , , , , , , & show all
 

ABSTRACT

Preparedness for nuclear accident responsiveness includes interventions to protect pregnancies against prolonged exposure to radioactive iodine. The aim of this study was to investigate a new design consisting of repeated administration of potassium iodide (KI, 1 mg/kg) for 8 days in late pregnancy gestational day 9–16 (GD9–GD16) in rats. The later-life effects of this early-life iodine thyroid blocking (ITB) strategy were assessed in offspring two months afterbirth. Functional behavioral tests including forced swimming test (FST) and rotarod test (RRT) in rats of both genders showed lower FST performance in KI-treated females and lower RRT performance in KI-treated male pups. This performance decline was associated with metabolic disruptions in cortex involving amino acid metabolism, tyrosine metabolism, as well as docosahexaenoic acid (DHA) lipids and signaling lipids in males and females. Beyond these behavior-associated metabolic changes, a portion of the captured metabolome (17–25%) and lipidome (3.7–7.35%) remained sensitive to in utero KI prophylactic treatment in both cortex and plasma of post-weaning rats, with some gender-related variance. Only part of these disruptions was attributed to lower levels of TSH and T4 (males only). The KI-induced metabolic shifts involved a broad spectrum of functions encompassing metabolic and cell homeostasis and cell signaling functions. Irrespective Regardless of gender and tissues, the predominant effects of KI affected neurotransmitters, amino acid metabolism, and omega-3 DHA metabolism. Taken together, data demonstrated that repeated daily KI administration at 1 mg/kg/day for 8 days during late pregnancy failed to protect the mother-fetus against nuclear accident radiation.

Abbreviations: CV-ANOVA: Cross-validation analysis of variance; DHA: Docosahexaenoic acid; FST: Forced swimming test; FT3: plasma free triiodothyronine; FT4: plasma free thyroxine; GD: Gestational day; ITB: Iodine thyroid blocking; KI: potassium iodide; LC/MS: Liquid chromatography coupled with mass spectrometry; MTBE: Methyl tert-butyl ether; m/z: mass-to-charge ratio; PLS-DA: Partial least squares–discriminant analysis; PRIODAC: Repeated stable iodide prophylaxis in accidental radioactive releases; RRT: Rotarod test; TSH: Thyroid-stimulating hormone; VIP: Variable importance in projection.

Acknowledgments

The authors thank the Pharmacie Centrale des Armées—French Armed Forces Central Pharmacy—for providing the KI solution.

Conflict of interest statement

The authors report no conflict of interests regarding the publication of this paper.

Supplementry material

Supplemental data for this article can be accessed here.

Additional information

Funding

This study is a part of the PRIODAC research program supported by the Investing for the Future program and the Agence Nationale de la Recherche [11-RSNR-0019].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.