492
Views
6
CrossRef citations to date
0
Altmetric
Articles

Differentially expressed long-chain noncoding RNAs in human neuroblastoma cell line (SH-SY5Y): Alzheimer’s disease cell model

, , , , , & show all
 

ABSTRACT

A number of complex human diseases including neurological diseases is characterized by dysregulation of long-chain noncoding RNA (lncRNA). The pathogenesis of Alzheimer's disease (AD), a neurodegenerative disorder is believed to involve alterations in lncRNAs. However, the specific lncRNAs modified in AD remain to be determined. The aim of this study was to identify lncRNAs associated with AD using human neuroblastoma cell line (SH-SY5Y) treated with beta-amyloid (Aβ) as a model of this disease. The differential expressions of lncRNA were compared between beta-amyloid (Aβ) SH-SY5Y cells and normal SH-SY5Y cells utilizing Illumina X10 gene sequencing. The differential expression profiles of amyloid (Aβ)-treated SH-SY5Y cells were determined and verified by qRT-PCR method. The expression levels of lncRNA were expressed by calculating the abundance of FPKM (measure gene expression). The differential expression of log2 (multiple change) >1 or log2 (multiple change) < −1 had statistical significance (P< .05). The differential expression profiles of amyloid (Aβ)-treated SH-SY5Y cells showed 40 lncRNA were up-regulated, while 60 lncRNA were down-regulated. GO and KEGG analysis demonstrated that differentially expressed genes were predominantly involved in the mitogen-activated protein kinase (MAPK) signaling pathway, p53 signaling pathway, hepatitis B, cell cycle, post-translational protein modification, and regulation. In conclusion, approximately 100 dysregulated lncRNA transcripts were found in amyloid (Aβ)-treated SH-SY5Y cells and these lncRNAs may play an important role in the occurrence and development of AD through altered signal pathways.

Additional information

Funding

This study was supported by the following grants: Project of National Natural Science Foundation of China (number: 81560195 to Zhi-ying Zhao) and by Natural Science Foundation of Inner Mongolia, China (number:2019MS08059 to Zhi-ying Zhao,2018MS08141 to,2018LH08076), Natural Science Foundation of Inner Mongolia, China (number:2018LH08076 to Ming Zhang) and Research Foundation of Health and Family planning Inner Mongolia, China (201701079).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.