291
Views
11
CrossRef citations to date
0
Altmetric
Articles

Anaerobic degradation of microcystin-LR by an indigenous bacterial Enterobacter sp. YF3

, , , , , & show all
 

ABSTRACT

Microcystin-LR (MC-LR), a known hepatotoxin present in drinking water, and contaminated food and algal dietary supplements poses a threat to environmental and public health and thus needs to be removed. Previously microbial aerobic degradation was considered the predominant catabolic process for MC-LR inactivation, but the potential role of anaerobic microbes still needs to be determined. In our study an anaerobic MC-degrading bacterium Enterobacter sp. YF3 was isolated and identified that was capable of degrading MC-LR. Under optimal conditions the anaerobic Enterobacter sp. YF3 displayed a MC-degrading rate of 0.34 µg/ml/day. This process was dependent on temperature, pH and MC-LR concentration. Further the extracellular secretion of metabolites of anaerobic bacterium degraded MC-LR at 0.22 µg/ml/day. The parent MC-LR as well as two MC-degrading products was identified by high performance liquid chromatography (HPLC). The anaerobic MC-degrading Enterobacter sp. bacterium metabolized MC-LR independent of MC-degrading genes mlrABCD. Data indicate that anaerobic Enterobacter sp. YF3 produces MC-degrading products via a pathway that acts independently of mlrABCD genes which may add to the arsenal of bacteria to degrade microcystins.

Additional information

Funding

This work was supported by the National Natural Science Foundation (81773393, 81502787); Central South University Innovation Driven Project (20170027010004); Key Research and Development Projects in Hunan Province (2019SK2041, 2018WK2013); Fundamental Research Funds for the Central Universities of Central South University (2018zzts858, CX20190241); The Ministry of Science and Technology of China (2015FY111100, 2016YFC0900802).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.