535
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Traffic-related particulate matter aggravates ocular allergic inflammation by mediating dendritic cell maturation

, , , & ORCID Icon
 

ABSTRACT

The aim of this study was to determine the effects of traffic-related particulate matter (PM) on allergic inflammation of ocular surfaces. BALB/c mice were sensitized with ovalbumin (OVA) and aluminum hydroxide via intraperitoneal injection. Two weeks later, mice were challenged with eye drops containing OVA concomitant with either traffic-related PM2.5 or vehicle eye drops. Topical OVA challenges were administered following unilateral subconjunctival injection of magnetic-bead-sorted CD11c+ dendritic cells (DC). The following were assessed: (1) clinical signs, (2) infiltration of inflammatory cells into conjunctiva, (3) serum levels of OVA-specific IgE production, and (4) T-cell cytokine secretion with topical application of PM2.5, compared to saline vehicle. PM2.5 was found to increase production of OVA-specific IgE in serum and Th2 immune response-related cytokines including interleukin (IL)-4, IL-17A, and IL-13 compared to vehicle control. It is of interest that PM2.5 treatment also elevated the population of mature DCs in draining lymph nodes (LNs). Exposure with PM2.5 was associated with a significant rise in conjunctival expression of IL-1β, IL-6, IL-17, and TNF. After subconjunctival injection of CD11c+DCs from PM2.5-treated allergic conjunctivitis (AC) mice into naïve mice, T cell responses and OVA-specific IgE were also enhanced. Data suggest that traffic-related PM2.5 exacerbated allergic conjunctivitis as evidenced by increased infiltration of inflammatory cells into the conjunctiva and Th2 responses in the draining LNs associated with enhanced maturation of DCs. Our findings provide new insight into the hazardous potential of traffic-related PM2.5 on allergic diseases, such as asthma or atopic dermatitis.

Declaration of interest statement

The authors have no commercial or proprietary interests in the products or companies mentioned in this article and declare no financial interest.

Supplemental material

Supplemental data for this article can be accessed on the publisher’s website.

Additional information

Funding

This work was supported by the Korea Ministry of Environment as Environmental Health Action Program [2016001360005]; Ministry of Education as Basic Science Research Program [2016R1C1B1010535]; Ministry of Health and Welfare as Korea Health Technology R&D Project [HI17C2012030018].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.