300
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Cytotoxic, antioxidant, and antiglycation activities, and tyrosinase inhibition using silver nanoparticles synthesized by leaf extract of Solanum aculeatissimum Jacq

, , , , , , , , , & show all
 

ABSTRACT

The present study aimed to determine the biological properties of an extract of Solanum aculeatissimum aqueous extract (SaCE) alone as well as silver nanoparticles (AgNPs) generated by green synthesis utilizing S. aculeatissimum aqueous extract (SaCE). These synthesized SaCE AgNPs were characterized using UV-VIS spectrophotometry, scanning transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), zeta potential (ZP), dynamic light scattering (DLS). Determination of total polyphenols, flavonoids, saponins content was conducted. In addition, high performance liquid chromatography-mass spectrometry (HPLC-MS) was employed to identify constituents in this extract. Antioxidant activity was determined by DPPH radical scavenging and ferric ion reducing power (FRAP) methods. Antiglycation activity was demonstrated through relative mobility in electrophoresis (RME) and determination of free amino groups. The inhibitory activity on tyrosinase was also examined. Molecular docking analyses were performed to assess the molecular interactions with DNA and tyrosinase. The antitumor activity SaCE was also measured. Phytochemical analysis of SaCE and AgNPs showed presence polyphenols (1000.41 and 293.37 mg gallic acid equivalent/g), flavonoids (954.87 and 479.87 mg rutin equivalent/g), saponins (37.89 and 23.01% total saponins), in particular steroidal saponins (aculeatiside A and B). Both SaCE and AgNPs exhibited significant antioxidant (respectively, 73.97%, 56.27% in DPPH test, 874.67 and 837.67 μM Trolox Equivalent/g in FRAP test) and antiglycation activities (72.81 and 67.98% free amino groups, results observed in RME). SaCE and AgNPs presented 33.2, 36.1% inhibitory activity on tyrosinase, respectively. In silico assay demonstrated interaction between steroidal saponins, DNA or tyrosinase. SaCE exhibited antitumor action against various human tumor cells. Data demonstrated that extracts SaCE alone and AgNPs synthesized from SaCE presented biological properties of interest for application in new therapeutic formulations in medicine.

Acknowledgments

This study was supported by the São Paulo Research Foundation Grant (FAPESP) and National Council for Scientific and Technological Development (CNPq).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability of statement

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

Credit authorship contribution statement

Silva, RMG: Conceptualization, Methodology, Investigation, Writing – Original Draft and supervision, Project administration. Pereira, IN and Zibordi, LC: Investigation, Writing – Review & Editing. Granero, FO and Figueiredo, CCM: Investigation, Writing – Original Draft. Rosatto, PAP: Validation, Investigation. Martin, CS, Eloizo Job, A and Constantino, CJL: Formal analysis, Writing; Nicolau-Junior, N: Molecular docking analysis; Silva, LP: Formal analysis, Writing – Review & Editing.

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.