16
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

The Effect of Electrostatic Charge on the Aspiration Efficiencies of Airborne Dust Samplers: With Special Reference to Asbestos

, &
Pages 613-621 | Published online: 04 Jun 2010
 

Abstract

An experimental investigation has been conducted into the effects of electrostatic charge, carried by the dust particles and by the sampler itself, on the sampling of airborne dusts. Experiments covering both personal and static sampling and a range of sampler types were carried out in the laboratory for both fibrous asbestos and isometric silica gel dusts. Experiments also were carried out in the spinning shop of an asbestos textile factory. The results showed that the aspiration efficiency of the sampler always is reduced as the charge on the sampler increases, independently of the type of sampler and of whether it is used as a static or personal sampler. The effect is most marked when sampling takes place in calm air. It is concluded from the results that, for the levels of charge reached by samplers in most practical situations, the effects on aspiration efficiency will be small. Possible exceptions to this might occur, however, in workplace environments where relative humidity is very low, and charge levels of the sampler (or on the worker wearing the sampler) can become high.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.