127
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Spatial Variation and Fractionation of Bed Sediment-Borne Copper, Zinc, Lead, and Cadmium in a Stream System Affected by Acid Mine Drainage

, &
Pages 831-849 | Published online: 25 Sep 2012
 

Abstract

An investigation was conducted to examine the spatial variation and fractionation of bed sediment-borne Cu, Zn, Pb, and Cd in a stream system affected by acid mine drainage. The pH had a major control on the spatial variation pattern of soluble, exchangeable, and carbonate-bound Cu, Zn, and Cd. There was a prominent concentration peak of carbonate-bound, oxide-bound, and organic-bound metals at the 29 km station, as controlled by the abundance of organic C, carbonate C, and oxides of manganese and iron. In general, the residual fraction was the dominant form for all four investigated metals. It was likely that oxide-Mn played a more important role in binding Zn and Cd than oxide-Fe did. In contrast, Cu had a higher affinity for iron hydrous oxides than for manganese oxide. Pb had a higher affinity for oxides of iron and manganese than for carbonates and organic matter. The presence of organic-bound metals in both the acidic upstream reach and non-acidic downstream reach suggests that the binding of these metals by organic matter was not markedly affected by pH, while the correspondence of organic C peak and organic-bound metal peaks at the 29 km station indicates a strong control by organic matter abundance on the quantity of organic-complexed metals.

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (Project No. 40471067 and Project No. 40773058), the Guangdong Bureau of Science and Technology (Project No. 2005A30402006), and the South China Institute of Environmental Sciences (Project No. 206030201-2009-K).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.