262
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Optimization and Simulation of Process Parameters in Biosorption of Heavy Metals by Alcaligenes faecalis Strain UBI (MT107249) Isolated from Soil of Local Mining Area in North-West Nigeria

, , &
 

ABSTRACT

The use of biological molecules to control pollutants, especially heavy metals that pollute our atmosphere, is gaining traction. In this study, simulation and optimization of process parameters using one-factor-at-a-time and response surface methodology (RSM) were employed to assess conditions for heavy metal tolerant bacteria isolated from local mining area employed in biosorption of heavy metals. Morphological, biochemical, and molecular characteristics of the isolate was determined using standard procedures. The agar plate method was used to determine heavy metal tolerance of the bacterial isolate. The effect of factors affecting biosorption of heavy metals was assessed using one-factor-at-a-time and response surface methodology respectively. The Gram-negative Alcaligenes faecalis strain UBI isolated in this study was capable of tolerating 27.0ppm of Pb2+. Optimum temperature and pH recorded were 35°C and 5 respectively. Similarly, optimum metal concentration indicated 2.5ppm with 12 hours contact time and at 7% of Inocula size (v/v) respectively. Simulation by RSM showed that the model is significant (p = .0013). The statistical accuracy of the model was elaborated by the non-significant lack of fit. The R2 (0.98) value highlights a perfect model likewise the low value of the coefficient of variance (CV = 3.09%). This study supports the idea of using bacteria as a panacea to heavy metal pollution under-regulated process parameters.

Acknowledgments

The authors would like to acknowledge the funding and financial support for this work by the Tertiary Education Trust Fund (TETFund) Nigeria.

Disclosure Statement

No potential conflict of interest was reported by the author(s).

Correction Statement

This article has been republished with minor changes. These changes do not impact the academic content of the article.

Additional information

Funding

This work was supported by the TETFund National Research Fund.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.