119
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Design and Implementation of a Sliding Mode Controller Using a Gaussian Radial Basis Function Neural Network Estimator for a Synchronous Reluctance Motor Speed Drive

, &
Pages 548-562 | Received 28 Jan 2010, Accepted 28 Aug 2010, Published online: 08 Apr 2011
 

Abstract

This article presents a sliding mode control using a Gaussian radial basis function neural network speed control design for robust stabilization and disturbance rejection of the synchronous reluctance motor. In the conventional sliding mode control design, it is assumed that the upper boundary of parameter variations and external disturbances is known and the sign function is used. This causes high-frequency chattering and high gain. A new sliding mode controller using a Gaussian radial basis function neural network estimator is proposed for the synchronous reluctance motor. The proposed method utilizes the Lyapunov function candidate to guarantee convergence and to track the speed command of the synchronous reluctance motor asymptotically. The estimator of parameter variations and external disturbances is designed to estimate the lump unknown uncertainty value in real time. Experiments were conducted to validate the proposed method.

Acknowledgment

This work is supported by the National Science Council in Taiwan, Republic of China (grant NSC96-2221-E-224-089).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.