199
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Unsymmetrical High-impedance Earth Fault Central Relay for Transmission Networks

&
Pages 1469-1492 | Received 13 Oct 2010, Accepted 03 May 2011, Published online: 07 Oct 2011
 

Abstract

This article presents a central relay based on wavelet transform for high-impedance earth fault detection, zone identification, location, and classification in part of the Egyptian 500-kV transmission network. The scheme recognizes the distortion of the voltage and current waveforms caused by the arcs usually associated with high-impedance earth faults for unsymmetrical faults, whether single line to ground fault The proposed discrete wavelet transform based analysis yields three phase voltages in the high-frequency range and zero-sequence root mean square current in the low-frequency range that are fed to fault detection and location algorithms, respectively, while phase currents in the high-frequency range are fed to the classification algorithm. The fault detection algorithm is based on the recursive method to sum the absolute values of the high-frequency signal generated over one voltage cycle, while the zone identification and fault location algorithms use unsynchronized zero-sequence root mean square currents. On the other hand, the fault classification algorithm is based on the currents in the high-frequency range for one-side data of the faulted line at the local relay after the detection and location process. Characteristics of the proposed central relay are analyzed by extensive simulation studies that clearly reveal that the proposed relay can accurately determine the network faulted line and can calculate fault distance with an acceptable error that does not exceed 5%. All simulation studies are carried out using a high-impedance earth fault model of a distribution system that is modified for transmission systems. An available real high-impedance earth fault case study is used to check the performance of the fault classification algorithm to classify phase and earth faults.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.