199
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Neural Network Based Internal Model Decoupling Control of Three-motor Drive System

, &
Pages 1621-1638 | Received 02 Sep 2011, Accepted 25 Jun 2012, Published online: 10 Oct 2012
 

Abstract

The multi-motor drive system is a multi-input–multi-output, non-linear, and strong-coupling system. Its high-precision coordinated control performance can meet the requirements of many drive applications, such as urban rail transit, paper making, electric vehicle drive, and steel rolling. To decouple the velocity and the tension of the three-motor drive system, a new control strategy is proposed by incorporating two-degree-of-freedom internal model control with the back-propagation neural network generalized inverse. First, the composite pseudo-linear system is formed by a cascading connection for the neural network generalized inverse with the original system. Second, a two-degree-of-freedom internal model control method is introduced to this pseudo-linear system. Finally, both simulation and experimental results are given for verification. The proposed strategy not only effectively decouples the velocity and tension, in which this multi-input–multi-output non-linear system is transformed into a number of single-input–single-output linear subsystems with open-loop stability, but it also enhances the tracking performance of the system.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.