176
Views
2
CrossRef citations to date
0
Altmetric
Technical Papers

The Impact of Acid Treatments and Electropolishing Stainless-Steel Surfaces on Tritium Inventories

, , &
Pages 275-280 | Received 16 May 2016, Accepted 15 Aug 2016, Published online: 07 Apr 2017
 

Abstract

The concentration of tritium in the adsorbed water layer on stainless-steel type 316 is notably higher than that present in the metal lattice. The absorbed waters play a key role in the migration of tritium into the metal. In this work, stainless-steel (type 316) surfaces were subjected to various pretreatments designed to alter the surface in order to probe the relation between surface conditions and total tritium inventories. These pretreatments included electropolishing and soaking in nitric-acid baths. Stainless-steel samples were loaded with tritium by exposure to a deuterium–tritium gas mixture at 25°C for 24 h. Total tritium inventories were measured using temperature-programmed desorption. The thermal desorption data show a reduction of 65% in total tritium inventory by electropolishing stainless-steel surfaces as compared to unmodified samples. It is also shown that treating the surfaces with nitric acid resulted in an increase in the tritium content by ~200%.

Acknowledgments

This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944, the University of Rochester, and the New York State Energy Research and Development Authority.

This report was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.