166
Views
0
CrossRef citations to date
0
Altmetric
Technical Papers

A Composite Neoclassical Toroidal Viscosity Model Incorporating Torques from both Axisymmetric and Nonaxisymmetric Tokamak Magnetic Fields

Pages 245-250 | Received 17 Apr 2018, Accepted 26 Jul 2018, Published online: 29 Oct 2018
 

Abstract

This paper combines the older neoclassical gyroviscous model for toroidal viscosity in the plasma core, which is based on an axisymmetric magnetic field and obtains reasonable agreement with experiment for toroidal rotation in the plasma core but not in edge plasma, with recent models for neoclassical toroidal viscosity (NTV) based on nonaxisymmetric “perturbation” magnetic field components present primarily in the edge plasma to obtain a composite toroidal viscosity model for toroidal velocity calculations in the tokamak core and edge plasma. This combination is facilitated by the fact that the same form of “drag frequency” representation of the viscous torque used in many of the new (NTV) torque models arising from toroidally nonaxisymmetric perturbation magnetic fields that are present mostly in the plasma edge can also be used to represent the old neoclassical toroidal viscous torques arising from toroidally axisymmetric magnetic fields.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.