113
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis of Carbon Nanotube Heterojunctions from the Decomposition of Ethanol

, &
 

Abstract

A new bimetallic catalyst of nickel-copper doped with praseodymium was used in the decomposition of ethanol. Results obtained showed the formation of a high density of carbon nanotube heterojunctions with the nanotubes having diameters ranging from 10 to 40 nm. Field emission scanning electron microscopy and transmission electron microscopy showed that the carbon nanotubes had many junctions along the surface. Raman spectra revealed that the ethanol as the carbon precursors is proficient to produce different form of carbon nanomaterials as designated by the evolution of the G-band and D-band intensities. The carbon nanotubes obtained were characterized by thermogravimetric analysis which gave a higher thermal decomposition at 520°C than carbon nanotubes without junctions previously synthesized (500°C). The percentage of weight lost is about 69%, which showed that the fairly high abundance of high purity carbon nanotube heterojunctions was synthesized.

Acknowledgments

We thank the Ministry of Science, Technology and Innovation of Malaysia (MOSTI) and University of Technology Malaysia for the financial support.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.