400
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

Hydrogen storage capacity of single-walled carbon nanotube prepared by a modified arc discharge

, , , &
Pages 355-358 | Received 28 Feb 2017, Accepted 08 Mar 2017, Published online: 08 Jun 2017
 

ABSTRACT

Single-walled carbon nanotubes (SWCNTs, the mean diameter of 1.35 nm) were produced by a modified arc discharging furnace using a mixture powder of KCl and Co-Ni alloy as catalyst at 600°C. The hydrogen storage capacity of SWCNTs was enhanced by the mechanism of atom hydrogen spillover from the supported catalyst. The temperature effect on the hydrogen storage capacity of as-grown SWCNTs was investigated. The relative experiments of SWCNT hydrogen uptake and release were carried out by a high-pressure volumetric gas-adsorption measurement system. The experimental results indicated that the hydrogen storage capacity of SWCNTs increased with the environmental temperatures decreasing. The hydrogen storage capacity of SWCNTs was up to 1.73 wt% at 77 K for 2 hours under the pressure of 10 MPa, and the corresponding releasing hydrogen capacity is about 1.23 wt% under ambient pressure.

Acknowledgments

This work was supported by the Natural Science Foundation of China (grant 51672221), the China Aeronautical Science Fund (grant 2014ZF53074) and the Graduate Starting Seed Fund of Northwestern Polytechnical University (grant Z2016002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.