122
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Structural and optical properties of C70 fullerenes in aqueous solution

ORCID Icon, , , , , , & show all
Pages 983-988 | Received 31 May 2023, Accepted 21 Jun 2023, Published online: 03 Jul 2023
 

Abstract

The simple method of preparation of highly stable and purified C70 fullerene aqueous solution (C70FAS) is proposed. The features of structural stabilization of C70 fullerenes in an aqueous solution by studying their structural and optical properties using Raman, photoluminescence, infrared reflection-absorption, UV–VIS absorption, and dynamic light scattering spectroscopy methods were analyzed. The experimental results showed that the most likely mechanism for C70 fullerenes stabilization in water is surface hydroxylation with covalent attachment of water hydroxyls to C70 fullerene carbons. Raman and infrared absorption spectra of C70FAS showed characteristic vibrational bands of C70 fullerenes with a slight broadening and low-frequency shift of ∼1 cm−1, indicating the attachment of water hydroxyls to the C70 fullerene carbons. The photoluminescence spectra showed excitonic emission bands of C70 molecules with intensity depending on their content. UV–VIS absorption spectra demonstrate the absorption bands typical for monomeric C70 fullerene. Finally, the dynamic light scattering data confirmed that C70FAS is a typical colloidal fluid containing both individual C70 molecules and their nano aggregates up to 100 nm. These findings provide insights into the stabilization mechanism of C70 fullerenes in water and may have implications for their potential application in nanobiotechnology.

Disclosure statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.