226
Views
6
CrossRef citations to date
0
Altmetric
Articles

The effects of repetitive transcranial magnetic stimulation on the cognition and neuronal excitability of mice

ORCID Icon, , , , , & show all
Pages 9-19 | Received 25 Jun 2019, Accepted 18 Nov 2019, Published online: 23 Nov 2019
 

ABSTRACT

This study aimed to investigate the effects of repetitive transcranial magnetic stimulation (rTMS) on the cognition and neuronal excitability of Kunming mice during the natural aging of the brain. Twenty young (2-3-month-old) female mice, 20 adult (9-10-month-old) female mice and 12 aged (14-15-month-old) female mice were divided into two groups (control and rTMS treatment). rTMS-treated groups were subjected to high-frequency (20 Hz) rTMS treatment for 15 days. Novel object recognition (NOR) and step-down tests were performed to examine cognition of learning and memory. The whole-cell patch clamp technique was used to record the resting membrane potential (RMP) and action potential (AP), and the intrinsic properties of the AP were analyzed (the frequence of AP, the after hyperpolarizing potential (AHP), the AP peak amplitude, the time to AP amplitude, the average rise/down slope). Results showed that the cognition and neuronal excitability of hippocampal dentate gyrus (DG) granule cells were significantly declined only in aged animals while no statistic differences were found between young and adult animals. Chronic high-frequency rTMS could significantly improve the age-related cognitive impairment in parallel with enhancing the DG granule cells’ neuronal excitability.

Disclosure of interest

The authors report no conflict of interest.

Additional information

Funding

This work was supported by the National Natural Science Foundation of China (No. 51507046, 51677053, 51737003) and the Postdoctoral Research Projects of Hebei Province (No. B2015003013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.