95
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Brain tumor classification for MRI images using dual-discriminator conditional generative adversarial network

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 81-94 | Received 13 May 2023, Accepted 15 Feb 2024, Published online: 10 Mar 2024
 

ABSTRACT

This research focuses on improving the detection and classification of brain tumors using a method called Brain Tumor Classification using Dual-Discriminator Conditional Generative Adversarial Network (DDCGAN) for MRI images. The proposed system is implemented in the MATLAB programming language. In this study, images of the brain are taken from a dataset and processed to remove noise and enhance image quality. The brain pictures are taken from Brats MRI image dataset. The images are preprocessed using Structural interval gradient filtering to remove noises and improve the quality of the image. The preprocessing outcomes are given to feature extraction. The features are extracted by Empirical wavelet transform (EWT) and the extracted features are given to the Dual-discriminator conditional generative adversarial network (DDCGAN) for recognizing the brain tumor, which classifies the brain images into glioma, meningioma, pituitary gland, and normal. Then, the weight parameter of DDCGAN is optimized by utilizing Border Collie Optimization (BCO), which is a met a heuristic approach to handle the real world optimization issues. It maximizes the detection accurateness and reduced computational time. Implemented in MATLAB, the experimental results demonstrate that the proposed system achieves a high sensitivity of 99.58%. The BCO-DDCGAN-MRI-BTC method outperforms existing techniques in terms of precision and sensitivity when compared to methods like Kernel Basis SVM (KSVM-HHO-BTC), Joint Training of Two-Channel Deep Neural Network (JT-TCDNN-BTC), and YOLOv2 including Convolutional Neural Network (YOLOv2-CNN-BTC). The research findings indicate that the proposed method enhances the accuracy of brain tumor classification while reducing computational time and errors.

PLAN LANGUAGE SUMMARY

This research focuses on improving the detection and classification of brain tumors using a method called Brain Tumor Classification using Dual-Discriminator Conditional Generative Adversarial Network (DDCGAN) for MRI images. Brain tumors can significantly impact normal brain function and lead to loss of lives, making timely diagnosis crucial. However, the process of locating affected brain cells is often time-consuming. In this study, images of the brain are taken from a dataset and processed to remove noise and enhance image quality. The proposed method employs the Empirical Wavelet Transform (EWT) for feature extraction and utilizes the DDCGAN to classify brain images into different types of tumors (glioma, meningioma, pituitary gland) and normal brain images. The weight parameter of DDCGAN is optimized using Border Collie Optimization (BCO), a method to handle real-world optimization issues. This optimization aims to maximize detection accuracy and minimize computational time. Implemented in MATLAB, the experimental results demonstrate that the proposed system achieves a high sensitivity of 99.58%. The BCO-DDCGAN-MRI-BTC method outperforms existing techniques in terms of precision and sensitivity when compared to methods like Kernel Basis SVM (KSVM-HHO-BTC), Joint Training of Two-Channel Deep Neural Network (JT-TCDNN-BTC), and YOLOv2 including Convolutional Neural Network (YOLOv2-CNN-BTC). The research findings indicate that the proposed method enhances the accuracy of brain tumor classification while reducing computational time and errors.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.