387
Views
33
CrossRef citations to date
0
Altmetric
Original Articles

Dynamic response of functionally graded beams in a thermal environment under a moving load

&
Pages 248-258 | Received 09 Apr 2013, Accepted 16 Aug 2013, Published online: 21 Oct 2015
 

ABSTRACT

The dynamic response of functionally graded (FG) beams in thermal environment subjected to moving load is investigated based on the first-order shear deformation theory (FSDT). The initial thermal stresses are determined by solving the thermoelastic equilibrium equations. The finite element method (FEM) is adopted to develop a solution procedure for FG beams with general loading and boundary conditions. The convergence behavior and accuracy of the method are shown through the different numerical examples. Finally, the influences of temperature rise, material graded index, moving load velocity, and boundary conditions on the dynamic behavior of FG beams in thermal environment is presented.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.