526
Views
90
CrossRef citations to date
0
Altmetric
Original Article

Small-scale effects on hygro-thermo-mechanical vibration of temperature-dependent nonhomogeneous nanoscale beams

&
Pages 924-936 | Received 27 Nov 2015, Accepted 17 Mar 2016, Published online: 06 Dec 2016
 

ABSTRACT

In this article, hygro-thermo-mechanical vibration analysis of functionally graded (FG) size-dependent nanobeams exposed to various hygro-thermal loadings is performed via a semi-analytical differential transform method (DTM). Three kinds of environmental conditions, namely, uniform, linear, and sinusoidal hygro-thermal loading, are investigated. Temperature-dependent material properties of a nonlocal FG beam change gradually according to the power-law distribution. A size-dependency description of the nanobeam is conducted using the nonlocal elasticity theory of Eringen. Applying DTM, the nonlocal coupled governing equations obtained from Hamilton's principle are solved. Finally, the impacts of moisture concentration, temperature rise, nonlocal parameters, material composition, and slenderness ratio on the vibrational characteristics of nanosize FG beams with arbitrary boundary conditions are explored. These findings can be used for the accurate design of FG nanostructures in various environmental conditions.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.