1,385
Views
112
CrossRef citations to date
0
Altmetric
Original Articles

Unified formulation of geometrically nonlinear refined beam theories

ORCID Icon & ORCID Icon
Pages 15-31 | Received 11 Jul 2016, Accepted 31 Aug 2016, Published online: 16 Feb 2017
 

ABSTRACT

By using the Carrera Unified Formulation (CUF) and a total Lagrangian approach, the unified theory of beams including geometrical nonlinearities is introduced in this article. According to CUF, kinematics of one-dimensional structures are formulated by employing an index notation and a generalized expansion of the primary variables by arbitrary cross-section functions. Namely, in this work, low- to higher-order beam models with only pure displacement variables are implemented by utilizing Lagrange polynomial expansions of the unknowns on the cross section. The principle of virtual work and a finite element approximation are used to formulate the governing equations, whereas a Newton-Raphson linearization scheme along with a path-following method based on the arc-length constraint is employed to solve the geometrically nonlinear problem. By using CUF and three-dimensional Green-Lagrange strain components, the explicit forms of the secant and tangent stiffness matrices of the unified beam element are provided in terms of fundamental nuclei, which are invariants of the theory approximation order. A symmetric form of the secant matrix is provided as well by exploiting the linearization of the geometric stiffness terms. Various numerical assessments are proposed, including large deflection analysis, buckling, and postbuckling of slender solid cross-section beams. Thin-walled structures are also analyzed in order to show the enhanced capabilities of the present formulation. Whenever possible, the results are compared to those from the literature and finite element commercial software tools.

Notes

1 The term load-step is extensively adopted even if a mixed load-displacement constraint equation will be utilized.

2 This is not true in the case of modified Newton-Raphson schemes, where is updated only at the first iteration of each load step.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.