166
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

A 2D problem of time-fractional heat order for two-temperature thermoelasticity under hydrostatic initial stress

&
Pages 279-285 | Received 13 Jul 2016, Accepted 15 Oct 2016, Published online: 21 Mar 2017
 

ABSTRACT

The present study solves the problem of thermoelastic interactions in a half-space medium under hydrostatic initial stress in the context of a fractional order heat conduction model with two-temperature theory. The analytical solutions of the field variables are obtained by using the normal mode analysis. The obtained solutions are then applied to a specific problem for a thermally insulated surface which is acted upon by a load. The distributions of the two temperatures, displacements, and the stress components inside the half-space are studied. The graphical results depict that the fractional parameter has significant effects on all the studied field variables. Comparisons are made within the theory in the presence and absence of the hydrostatic initial stress. Thus, we can conclude that the fractional order generalized thermoelasticity model may be an improvement on studying elastic materials.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.