203
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Size dependent buckling analysis of nano sandwich beams by two schemes

&
Pages 975-990 | Received 26 Mar 2018, Accepted 19 Jul 2018, Published online: 11 Jan 2019
 

Abstract

Within the framework of Timoshenko beam theory, the buckling of nano sandwich beams is developed. The material properties are assumed to vary arbitrarily in both axial and thickness directions. These types of beams are referred to as bi-directional functionally graded (BDFG) beams. Two types of nano sandwich beams with different material distribution patterns and immovable supports are considered. Since the size effects play a significant role in mechanical behavior of nanostructures, the small-scale effects are captured by Eringen’s nonlocal theory of elasticity. The governing equations are derived using the variational formulation. Symmetric smoothed particle hydrodynamics (SSPH) and the Galerkin method are adopted as numerical solution approaches. As a truly meshless method, the convergence of the SSPH technique mainly depends on the smoothing length value and distribution of particles in the compact support domain of the kernel function. The Revised Super Gauss Function is used as the kernel function and an optimum value for the smoothing length that bears the fastest convergence rate is obtained. The solution methods are verified through benchmark problems found in the literature. Numerical and illustrative results show that various parameters, including the aspect ratio, nonlocal parameter, gradient indexes, and cross-sectional types have significant effects on the buckling responses of BDFG nano sandwich beams.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.