548
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Homogenization and free-vibration analysis of elastic metamaterial plates by Carrera Unified Formulation finite elements

, ORCID Icon, , , ORCID Icon &
Pages 476-485 | Received 08 Jan 2018, Accepted 30 Jan 2019, Published online: 23 Feb 2019
 

Abstract

This work focuses on the assessment of a novel so-called “homogenization method” allowing to transform a heterogeneous material with inclusions or holes into an equivalent homogeneous material with equal mechanical behavior. The aim is to avoid meshing holes of the real material in finite-element codes, thus improving computation time for further analysis of the material. Typical periodic structure of passive acoustic metamaterial plates is considered here, with inclusions/holes that should improve the acoustic performances in the low-frequency range. The three-dimensional homogenization method, based on Carrera unified formulation (CUF) [E. Carrera, M. Cinefra, M. Petrolo, and E. Zappino. Finite Element Analysis of Structures through Unified Formulation. John Wiley & Sons, 2014] and Mechanics of Structure Genome, is assessed for a perforated plate made of a linear elastic material with periodic arrangement of holes. Different configurations of the metamaterial plate are considered, changing the number of the holes. The results obtained from the free-vibration analysis of the homogenized plates, performed by higher-order two-dimensional models contained in CUF, are compared with ABAQUS results and both numerical and experimental results provided in literature.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.