404
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

The in-plane tensile and shear properties of novel chiral cellular structures

ORCID Icon, &
Pages 5933-5952 | Received 13 Jun 2021, Accepted 14 Aug 2021, Published online: 31 Aug 2021
 

Abstract

Cellular structures have been widely studied and employed in engineering because of their excellent mechanical properties. To enrich the geometric diversity of cellular structures, we proposed two novel chiral cellular structures composed of half-periodic and full-periodic cosinoidal beams respectively in this paper. The in-plane elastic properties were studied by a combination of the energy method and the finite element analysis, and verified by the experimental test. The influences of geometric parameters on the elastic constants were analyzed. Then, the elastic properties of the two structures as well as the V-shaped chiral structure were compared. Finally, error analysis was carried out on the theoretical models. Results show that: (1) the two structures own considerably low equivalent elastic moduli and extremely high strain capabilities, and possess certain in-plane elastic coupling effects; (2) the elastic properties of the two structures are highly tunable with the variations of geometric parameters; (3) the elastic moduli of the two structures are lower than that of the V-shaped structure, and the structure with half-periodic beams exhibits the lowest in-plane stiffness and the highest strain capabilities; (4) the theoretical models without considering the internal axial force are convincible in predicting the elastic properties when the corresponding chord ratio is larger than 0.2. Generally, the proposed structures have great potential as flexible structures for morphing application.

Disclosure statement

No potential competing interest was reported by the authors.

Additional information

Funding

This work was supported by the National Natural Science Foundation of China (grant number 51605140), the Fundamental Research Funds for the Central Universities (grant number B200202168) and the Natural Science Foundation of Guangdong Province (grant number 2018A030313430).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.