450
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Wrinkling behavior of variable thickness films bonded to elastic substrates

, , , &
Pages 7316-7328 | Received 06 Sep 2021, Accepted 16 Oct 2021, Published online: 28 Oct 2021
 

Abstract

The wrinkling morphologies in film–substrate systems are formed spontaneously, which provides a promising way to introduce novel functions on material surfaces. However, wrinkling behavior of variable thickness films bonded to elastic substrates is still unclear, which restricts the blooming applications of tunable wetting, tunable optical and antifouling surfaces. In the present paper, critical strain and wrinkling morphology affected by various parameters for two typical cases of variable film–substrate systems, that is, films with thickness gradient and films with periodic surface morphologies, are studied first. Theoretical analysis is then conducted to uncover the mechanism of different wrinkling patterns. And the wrinkling behavior of some extended designs based on the two typical cases is finally explored. It is found that the critical loading and wrinkling morphologies for the two typical cases are quite different. Three buckling modes are found, that is, sinusoidal buckling, Euler buckling and rigid rotation for periodic surface topologies of different scale compared with the wrinkling wavelength, which agrees well with theoretical prediction. Wrinkling morphologies can be well tuned by adjusting the thickness difference, the lengths of thick and thin regions, as well as surface morphologies of local regions of the upper film. The findings should be useful for the design of film–substrate systems in engineering practices, and improve the knowledge of elastic instability.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Additional information

Funding

This study is funded by the Fundamental Research Funds for the Central Universities [No. 2019XKQYMS40].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.