161
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Connexin32 deficiency exacerbates carbon tetrachloride-induced hepatocellular injury and liver fibrosis in mice

, , , , , , , , , , , , & show all
Pages 362-370 | Received 11 Mar 2016, Accepted 14 May 2016, Published online: 07 Jun 2016
 

Abstract

Objective: Liver fibrosis results from the perpetuation of the normal wound healing response to several types of injury. Despite the wealth of knowledge regarding the involvement of intracellular and extracellular signaling pathways in liver fibrogenesis, information about the role of intercellular communication mediated by gap junctions is scarce.

Methods: In this study, liver fibrosis was chemically induced by carbon tetrachloride in mice lacking connexin32, the major liver gap junction constituent. The manifestation of liver fibrosis was evaluated based on a series of read-outs, including collagen morphometric and mRNA analysis, oxidative stress, apoptotic, proliferative and inflammatory markers.

Results: More pronounced liver damage and enhanced collagen deposition were observed in connexin32 knockout mice compared to wild-type animals in experimentally triggered induced liver fibrosis. No differences between both groups were noticed in apoptotic signaling nor in inflammation markers. However, connexin32 deficient mice displayed decreased catalase activity and increased malondialdehyde levels.

Conclusion: These findings could suggest that connexin32-based signaling mediates tissue resistance against liver damage by the modulation of the antioxidant capacity. In turn, this could point to a role for connexin32 signaling as a therapeutic target in the treatment of liver fibrosis.

Disclosure statement

The authors report no declarations of interest.

Funding information

This work was financially supported by the grants of the “Fundação de Auxílio à Pesquisa do Estado de São Paulo” (FAPESP grants 06/56138-7; 05/59583-9 and SPEC 13/50420-6), the European Research Council (ERC Starting Grant 335476), the Fund for Scientific Research-Flanders (FWO grants G009514N and G010214N) and the University Hospital of the Vrije Universiteit Brussel-Belgium (“Willy Gepts Fonds” UZ-VUB).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.