83
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Molecular interactions of dioxins and DLCs with the ketosteroid receptors: an in silico risk assessment approach

, , , , , , & show all
Pages 151-163 | Received 07 Sep 2016, Accepted 03 Dec 2016, Published online: 11 Jan 2017
 

Abstract

Dioxins and dioxin-like compounds (DLCs) are the ones with poor water solubility and low volatility, resistant to physical, chemical and biological processes, persistent in the environment even under extreme conditions. Due to lipophilic nature, they get adhered to the fatty material and concentrate through biomagnification and bioaccumulation, thereby easily getting incorporated into food chains, paving the way to endocrine disruption via modulation of various human receptors. This in turn leads to certain adverse health effects. In the present study, a total of 100 dioxins and DLCs were taken and their binding pattern was assessed with the ketosteroid receptors, i.e. androgen (hAR), glucocorticoid (hGR), progesterone (hPR) and mineralocorticoid (hMR) in comparison to the corresponding natural steroids and a known endocrine disrupting xenobiotic, Bisphenol A (BPA). Most of the DLCs, particularly those bearing hydroxyl (-OH) group showed considerable affinities with ketosteroid receptors. On comparing D scores of all the dioxins and DLCs against all four receptors, compound 8-hydroxy-3,4-dichlorodibenzofuran(8-OH-DCDF) exhibited least D score of -9.549 kcal mol−1 against hAR. 3,8-Dihydroxy-2-chlorodibenzofuran(3,8-DiOH-CDF), 4′-hydroxy-2,3,4,5-tetrachlorobiphenyl (4′-OH-TCB) and 4-hydroxy-2,2′,5′-trichlorobiphenyl(4-OH-TCB) also showed comparable molecular interactions with the ketosteroid receptors. These interactions mainly include H-bonding, π–π stacking, hydrophobic, polar and van der Waals’ interactions. In contrast, BPA and some natural ligands tested in this study showed lower binding affinities with these receptors than certain DLCs reported herein, i.e. certain DLCs might be more toxic than the proven toxic agent, BPA. Such studies play a pivotal role in the risk assessment of exposure to dioxins and DLCs on human health.

Acknowledgements

The authors are thankful to Jamia Hamdard, New Delhi.

Disclosure statement

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.