266
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Involvement of the activation of Nrf2/HO-1, p38 MAPK signaling pathways and endoplasmic reticulum stress in furazolidone induced cytotoxicity and S phase arrest in human hepatocyte L02 cells: modulation of curcumin

, , , , &
Pages 165-172 | Received 12 Sep 2016, Accepted 13 Dec 2016, Published online: 08 Jan 2017
 

Abstract

Furazolidone (FZD) is extensively used as the antiprotozoal and antibacterial drug in clinic. The previous study has shown that curcumin pretreatment could improve FZD induced cytotoxicity by inhibiting oxidative stress and mitochondrial apoptotic pathway. The current study aimed to investigate the potential roles of endoplasmic reticulum (ER) stress, p38 mitogen-activated protein kinases (p38 MAPK) signaling pathway in curcumin against FZD cytotoxicity by using human hepatocyte L02 cells. The results showed that curcumin could markedly attenuate FZD induced cytotoxicity. Compared with FZD alone group, curcumin pretreatment significantly reduced the expression of phospho (p)-p38, cyclin D1, p-checkpoint kinase 1 (ChK1) and breast cancer associated gene 1 (BRCA1) protein, followed to attenuate S phase arrest. Meanwhile, curcumin pretreatment prevented FZD induced ER stress, evidenced by the inhibition of glucose-regulated protein 78 and DNA damage inducible gene 153/C/EBP-homologous protein (GADD153/CHOP) protein expression. Moreover, compared with the control, FZD exposure activated the protein and mRNA expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1), which were further activated by curcumin treatment. These results reveal that curcumin could prevent FZD induced cytotoxicity and S phase arrest, which may involve the activation of Nrf2/HO-1 pathway and the inhibition of p38 MAPK pathway and ER stress.

Disclosure statement

The authors declare that there are no conflicts of interest.

Additional information

Funding

This study was supported by key projects in the National Science and Technology Pillar Program during the 12th five-year plan period of China [2015BAD11B03] and the National Natural Science Foundation of China [Award number 31372486].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.