186
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Modulatory effects of quercetin on liver histopathological, biochemical, hematological, oxidative stress and DNA alterations in rats exposed to graded doses of score 250

, , , , , , , , , & show all
Pages 12-22 | Received 29 Apr 2017, Accepted 03 Jul 2017, Published online: 25 Jul 2017
 

Abstract

This study investigated the morphological, biochemical and molecular aspects of liver injury in rats after the exposure to difenoconazole and the protective effects of quercetin against hepatotoxicity and genotoxicity induced by this fungicide. Rats were given graded doses of difenoconazole associated or not to quercetin daily for 20 days. Our results showed a significant increase in PLT (platelets) and WBC (white blood cells) in rats treated with higher doses of difenoconazole (1/38 and 1/9 of LD50). However, a significant decrease in Hb (hemoglobin) rate and RBC (red blood cells) number in rats treated with higher doses of difenoconazole (1/38 and 1/9 of LD50) was obtained. Besides, difenoconazole treatment caused an increase in hepatic enzyme activities of alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH). Difenoconazole increased the levels of malondialdehyde (MDA) and advanced oxidation protein products (AOPPs), and decreased superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) activities and vitamin C levels in liver tissues compared to the control group. We also noted a degradation of nucleic acids, testifying difenoconazole genotoxicity. Changes in hepatic tissues were confirmed by histological findings. Co-administration of quercetin (20 mg/kg) improved hematological and biochemical parameters and showed a significant liver protective effect by decreasing MDA levels and producing advanced oxidation protein, along with increased antioxidative enzyme activities and vitamin C levels. Results were confirmed by the improvement of histological impairments. Thus, it appears that quercetin was effective in preventing acute liver injury induced by exposure to difenoconazole.

Acknowledgements

The authors are grateful to Kamel Maaloul, English professor at the Faculty of Science Sfax, for having proofread the manuscript.

Disclosure statement

The authors declare that they have no competing interests.

Additional information

Funding

This work has been funded by the Ministry of Higher Education, Scientific Research and Technology, Tunisia (Laboratory of Pharmacology, Sfax University, UR/12 ES-13).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.