131
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Molecular interactions of bisphenols and analogs with glucocorticoid biosynthetic pathway enzymes: an in silico approach

, ORCID Icon, , , &
Pages 45-54 | Received 07 Jun 2017, Accepted 13 Jul 2017, Published online: 03 Aug 2017
 

Abstract

Glucocorticoids are known to have vital effects on metabolism, behavior and immunity. Any sort of impairment in their synthesis may lead to the generation of numerous ill health effects. Different environmental toxicants, including bisphenols and their analogs pose deleterious effect on the biosynthesis of glucocorticoids, thereby leading to endocrine disruption. In order to assess the effect of these environmental toxicants on gluocorticoid biosynthetic pathway, an in silico study was performed. This involved molecular docking studies of 18 ligands with the selected participating enzymes of the pathway. These enzymes were CYP11A1, CYP11B2, CYP19A1, CYP17A1, 3α/20β-HSD, 3β/17β-HSD and CYP21A2. Comparison of their binding affinity was made with the known inhibitors of these enzymes. In case of CYP11A1, Bisphenol M (BP M) had the lowest docking score (D score) of −8.699 kCal/mol, and was better than that of the standard, Metyrapone. Bisphenol PH (BP PH) was found to have significant affinity with CYP11B2. In case CYP19A1, results were found to be comparable with the standards, Exemestane and Letrozole. BP PH elicited better results than the standard Abiraterone acetate against CYP17A1. BP M had a D score of −7.759 against 3α/20β-HSD, again better results than the standard, Trilostane. Upon molecular docking of BP PH against CYP21A2, it was seen that amongst all the analogs, it had maximum interactions along with the lowest D score. From all the above instances mentioned, it is quite evident that certain BPA analogs have more potential to modulate the enzymes involved in comparison to the known inhibitors.

Acknowledgements

The authors are thankful to Jamia Hamdard, New Delhi.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.