281
Views
19
CrossRef citations to date
0
Altmetric
Research Article

In silico molecular interaction of bisphenol analogues with human nuclear receptors reveals their stronger affinity vs. classical bisphenol A

, , , & ORCID Icon
Pages 660-669 | Received 09 Mar 2018, Accepted 17 Jun 2018, Published online: 05 Oct 2018
 

Abstract

Background: Bisphenol A (BPA) is known for endocrine disrupting activity. In order to replace BPA, a number of bisphenol analogues have been designed. However, their activity profile is poorly described and little information exists about their endocrine disrupting potential and interactions with nuclear receptors. An understanding of such interaction may unravel mechanism of their molecular action and provide valuable inputs for risk assessment. BPA binds and activates peroxisome proliferator-activated receptors (PPARs) and retinoid X receptors (RXRs) which act as transcription factors and regulate genes involved in glucose, lipid, and cholesterol metabolism and adipogenesis.

Methods: We studied binding efficiency of 18 bisphenol analogues and BPA with human PPARs and RXRs. Using Maestro Schrodinger 9.4, docking scores of bisphenols were compared with the known endogenous and exogenous ligands of hPPARs and hRXRs.

Results: BPA showed good binding efficiency. Several analogues also showed higher binding efficiency than BPA. BPPH which has high tendency to be absorbed in tissues showed the strongest binding with hPPARα, hPPARβ, hPPARγ, and hRXRα whereas two of the most toxic bisphenols, BPM and BPAF showed strongest binding with hRXRβ and hRXRγ.

Conclusions: Some of the bisphenol analogues showed a stronger binding affinity with PPAR and RXR compared to BPA implying that BPA substitutes may not be fully safe and chemico-biological interactions indicate their toxic potential. These results may also serve to plan further studies for determining safety profile of bisphenol analogues and be helpful in risk characterization.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

Ms. Shikha Sharma received Senior Research Fellowship from the Basic Scientific Research (BSR) Scheme of University Grants Commission (UGC), Government of India sanctioned to the Department of Medical Elementology & Toxicology.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.