227
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Critical role of mitochondrial oxidative stress in acid aspiration induced ALI in mice

ORCID Icon & ORCID Icon
Pages 266-274 | Received 18 Sep 2019, Accepted 27 Dec 2019, Published online: 16 Jan 2020
 

Abstract

Acute lung injury (ALI) is a pulmonary inflammatory disorder which causes significant mortality in critically ill patients. Intracellular oxidative stress has been considered to be the major component in the pathogenesis of ALI but exact source of intracellular ROS is not clearly known. The present study has been designed to elucidate the role of NADPH oxidase system and/or mitochondrial oxidative stress and its downstream pathway NLRP3 inflammasomes in mouse model of acid aspiration mediated ALI. Our data showed that acid aspiration induced lung inflammation was associated with enhanced oxidative stress as evident by data on MDA levels, nitrite levels and redox imbalance. Further acid aspiration resulted in elevation of expression of NADPH oxidase subunits (gp91 phox/p22 phox/p67 phox) as well as mitochondrial oxidative stress as reflected by aconitase activity, mitochondrial ROS levels. Interestingly, NADPH oxidase inhibitor, apocynin did not alter lung inflammation upon HCl instillation. Conversely, mitochondrial antioxidant mito-tempo resulted in significant amelioration of lung inflammation as indicated by suppression of pulmonary neutrophils and inflammatory cytokines namely IL-1β, TNF-α, IL-6 in BALF. Analysis of mitochondrial enzymes aconitase/mitochondrial ROS/Mn-SOD confirmed that reduction in lung inflammation by mito-tempo was associated with normalization of oxidative stress in mitochondria. Further, mito-tempo administration blunted phosphorylation of p65- NF-κB at Ser 536. Finally, mito-tempo downregulated HCl-induced NF-κB-dependent pro-inflammatory cytokines (IL-1β, TNF-α, IL-6) drastically at mRNA levels. Overall, our data support that mitochondrial oxidative stress is crucial in modulating the HCl induced lung inflammation and identifies mitochondrial-targeted antioxidant as a potential therapeutic agent.

Author contribution

ASN and GP conceived and designed the experiments; GP performed the experiments; ASN and GP analyzed the data; GP wrote the paper and ASN edited it.

Disclosure statement

The authors declare that there are no conflicts of interest.

Additional information

Funding

This research work was supported by grants from Department of Biotechnology, Government of India [BT/PR17968/MED/122/33/2016] and University Grants Commission, New Delhi, India [UGC-SAP] to ASN. The authors also acknowledge the ICMR senior research fellowship to GP from ICMR, New Delhi, India.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.