177
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Effects of nano-titanium dioxide on calcium homeostasis in vivo and in vitro: a systematic review and meta-analysis

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 249-259 | Received 17 Jun 2022, Accepted 30 Aug 2022, Published online: 19 Sep 2022
 

Abstract

With the extensive application of titanium dioxide nanoparticles (TiO2 NPs), their impacts on calcium homeostasis have aroused extensive attention from scholars. However, there are still some controversies in relevant reports. Therefore, a systematic review was performed followed by a meta-analysis to explore whether TiO2 NPs could induce the imbalance in calcium homeostasis in vivo and in vitro through Revman5.4 and Stata15.0 in this research. Fourteen studies were included through detailed database retrieval and literature screening. Results indicated that the calcium levels were significantly increased and the activity of Ca2+-ATPase was significantly decreased by TiO2 NPs in vivo and in vitro. Subgroup analysis of the studies in vivo showed that TiO2 NPs exposure caused a significant increase in calcium levels in rats, exposure to large-sized TiO2 NPs (>10 nm) and long-term (>30 days) exposure could significantly increase calcium levels, and the activity of Ca2+-ATPase showed a concentration-dependent downward trend. Subgroup analysis of the studies in vitro revealed that intracellular calcium levels increased significantly in animal cells, exposure to small-sized TiO2 NPs (≤10 nm) and high concentration (>10 μg/mL) exposure could induce a significant increase in Ca2+ concentration, and the activity of Ca2+-ATPase also showed a concentration-dependent downward trend. This research showed that the physicochemical properties of TiO2 NPs and the experimental scheme could affect calcium homeostasis

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by the National Natural Science Foundation of China [21966027, 81560536].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.