60
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Sulforaphane suppresses cell proliferation and induces apoptosis in glioma via the ACTL6A/PGK1 axis

, &
Pages 507-516 | Received 28 Aug 2023, Accepted 11 Jan 2024, Published online: 25 Jan 2024
 

Abstract

This study aimed to examine the expression and biological functions of ACTL6A in glioma cells (U251), the effects of sulforaphane on the growth of U251 cells and the involvement of the ACTL6A/PGK1 pathway in those effects. The U251 cell line was transfected with ACTL6A over-expression plasmids to upregulate the protein, or with ACTL6A inhibitor to underexpress it, then treated with different concentrations of sulforaphane. Cell viability, proliferation, and apoptosis were assessed using standard assays, and levels of mRNAs encoding ACTL6A, PGK1, cyclin D1, Myc, Bax or Bcl-2 were measured using quantitative real-time polymerase chain reaction (qRT-PCR). ACTL6A and PGK1 were expressed at higher levels in glioma cell lines than in normal HEB cells. ACTL6A overexpression upregulated PGK1, whereas ACTL6A inhibition had the opposite effect. ACTL6A overexpression induced proliferation, whereas its inhibition repressed proliferation, enhanced apoptosis, and halted the cell cycle. Moreover, sulforaphane suppressed the growth of U251 cells by inactivating the ACTL6A/PGK1 axis. ACTL6A acts via PGK1 to play a critical role in glioma cell survival and proliferation, and sulforaphane targets it to inhibit glioma.

Acknowledgments

The authors thank the Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention Hubei.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.